On the Asymptotic Distribution of Large Prime Factors

نویسندگان

  • PETER DONNELLY
  • GEOFFREY GRIMMETT
چکیده

A random integer N, drawn uniformly from the set {1,2,..., n), has a prime factorization of the form N = a1a2...aM where ax ^ a2 > ... ^ aM. We establish the asymptotic distribution, as «-»• oo, of the vector A(«) = (loga,/logiV: i: > 1) in a transparent manner. By randomly re-ordering the components of A(«), in a size-biased manner, we obtain a new vector B(n) whose asymptotic distribution is the GEM distribution with parameter 1; this is a distribution on the infinite-dimensional simplex of vectors (xv x2,...) having non-negative components with unit sum. Using a standard continuity argument, this entails the weak convergence of A(/i) to the corresponding Poisson-Dirichlet distribution on this simplex; this result was obtained by Billingsley [3].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Efficiencies of the MLE Based on Bivariate Record Values from Bivariate Normal Distribution

Abstract. Maximum likelihood (ML) estimation based on bivariate record data is considered as the general inference problem. Assume that the process of observing k records is repeated m times, independently. The asymptotic properties including consistency and asymptotic normality of the Maximum Likelihood (ML) estimates of parameters of the underlying distribution is then established, when m is ...

متن کامل

Explicit Estimates for the Distribution of Numbers Free of Large Prime Factors

There is a large literature on the asymptotic distribution of numbers free of large prime factors, so-called smooth or friable numbers. But there is very little known about this distribution that is numerically explicit. In this paper we follow the general plan for the saddle point argument of Hildebrand and Tenenbaum, giving explicit and fairly tight intervals in which the true count lies. We ...

متن کامل

Asymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables

Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...

متن کامل

Second Order Moment Asymptotic Expansions for a Randomly Stopped and Standardized Sum

This paper establishes the first four moment expansions to the order o(a^−1) of S_{t_{a}}^{prime }/sqrt{t_{a}}, where S_{n}^{prime }=sum_{i=1}^{n}Y_{i} is a simple random walk with E(Yi) = 0, and ta is a stopping time given by t_{a}=inf left{ ngeq 1:n+S_{n}+zeta _{n}>aright}‎ where S_{n}=sum_{i=1}^{n}X_{i} is another simple random walk with E(Xi) = 0, and {zeta _{n},ngeq 1} is a sequence of ran...

متن کامل

Asymptotic distributions of Neumann problem for Sturm-Liouville equation

In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993